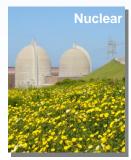
daho National Laboratory

U.S. Department of Energy Vehicle Technologies Program's Plug-in Electric Vehicle and Charging Infrastructure Demonstrations

**John Smart** 

IEEE Power & Energy Society General Meeting Electric Vehicle Super Session Detroit, MI July 26, 2011


This presentation does not contain any proprietary or sensitive information

### **Idaho National Laboratory**

- Eastern Idaho based U.S. Department of Energy (DOE) Federal laboratory
- 890 square mile site with 3,600 staff
- Support DOE's strategic goal:



- Increase U.S. energy security and reduce the nation's dependence on foreign oil
- Multi-program DOE laboratory
  - Nuclear Energy
  - Fossil, Biomass, Wind, Geothermal and Hydropower Energy
  - Advanced Vehicles and Battery Development
  - Energy Critical Infrastructure Protection













Wind

### **AVTA Participants and Goals**

- Participants
  - The Advanced Vehicle Testing Activity (AVTA) is part of DOE's Vehicle Technologies Program
  - The Idaho National Laboratory (INL) conducts the AVTA per DOE guidance
  - 100+ fleets and organizations as testing partners
  - Some of these ATVA vehicle testing activities are conducted with ECOtality North America
- The AVTA goal Petroleum reduction and energy security
  - Perform testing and Provide benchmark data to technology modelers, research and development programs, vehicle manufacturers (via VSATT), and target and goal setters
  - Assist fleet managers in making informed vehicle and infrastructure purchase, deployment and operating decisions





### **Presentation Outline**

- US DOE's Transportation Electrification
  Demonstrations
- INL's role with data collection and reporting
- Recovery Act data collection projects
- EV Project background and results to date
- Ford PHEV Escape demo results to date
- Other data collection activities

ENERC

### DOE's Transportation Electrification Demonstrations under American Recovery and Reinvestment Act (ARRA)





### **ARRA Transportation Grants**

- \$2 Billion in DOE grants to establish advanced battery, power electronics and motors manufacturing
- \$400 Million for Transportation Electrification
  Demonstration, Infrastructure, and Education
  - 8 awards totaling over \$360M for grid-connected vehicle and infrastructure demonstrations
    - 13,000 vehicles from 9 OEMs and over 22,000 charging stations are being deployed across America
    - Vehicle performance and grid impact data are being gathered and analyzed to support the development of vehicle technologies and grid infrastructure
  - 10 awards totaling \$39M to establish comprehensive educational and outreach programs





### **Transportation Electrification Demonstration Activities**

ECOtality North America - AWARD: \$114.8M The EV Project infrastructure demonstration

- Demonstration of 5,700 Nissan Leaf EVs and 2,600 Chevy Volt EREVs
- Deployment of 15,000 Level 2 electric vehicle supply equipment (EVSE) charging Stations (EVSE) and 300 fast chargers, in 16 metropolitan areas
- Full instrumentation of vehicles and infrastructure for comprehensive data-collection and analysis effort

#### Coulomb Technologies - AWARD: \$15M ChargePoint Amercia infrastructure demonstration

- Deployment of approximately 4,000 public and private charging stations in up to 9 U.S. Cities
- Locations will be coordinated with OEM deployment of 400 grid connected vehicles





## Transportation Electrification Demonstration Activities (cont'd)

General Motors - AWARD: \$30.5M Chevrolet Volt vehicle demonstration

- Develop, analyze, and demonstrate 145 Chevy Volt EREVs for electric utilities and 500 Volt EREVs to consumers
- Manufacturing in Detroit, MI; Deployment in conjunction
  with several utility partners

#### Chrysler, LLC - AWARD: \$48M Ram PHEV vehicle demonstration

- Development, validation, and deployment of 140 PHEV Dodge Ram pickups
- Deployment of vehicles through 11 partner fleets across a wide range of geographic, climatic, and operating environments





ENERC

## Transportation Electrification Demonstration Activities (cont'd)

### South Coast Air Quality Management District - AWARD: \$45.4

- Development of a fully integrated production PHEV system for Class 2-5 vehicles (8,501-19,500 lbs GVWR).
- Demonstration of 378 trucks and shuttle buses through network of partner fleets
- SCAQMD based in Diamond Bar, CA; Manufactured in Galesburg, MI, and Elizabethtown, KY

#### Smith Electric Vehicle - AWARD: \$32M

- Develop and deploy up to 500 medium-duty electric trucks.
- Manufacturing in Kansas City, MO; Deployment in conjunction with 20 launch partners representing a range of commercial and public sector markets, geographies, and climates

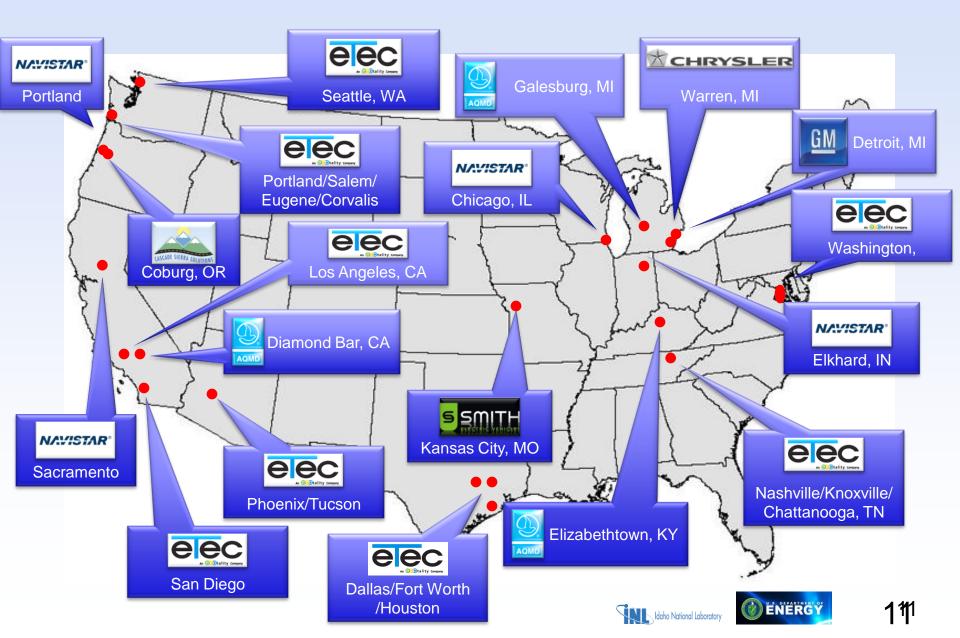




ENERG

## Transportation Electrification Demonstration Activities (cont'd)

Navistar, Inc. - AWARD: \$39.2M


- Develop, validate, deploy 950 advanced Battery Electric delivery trucks (12,100 lbs GVWR) with a 100-mile range
- Manufacturing in Elkhard Co., IN; Deployment in Portland, Chicago, and Sacramento

#### Cascade Sierra Solutions - AWARD: \$22.2M

- Deployment of truck stop electrification infrastructure at 50 sites along major US interstate corridors
- Provide 5,450 rebates of 25% of the cost for truck modification to incorporate idle reduction technologies



### **Transportation Electrification Distribution**

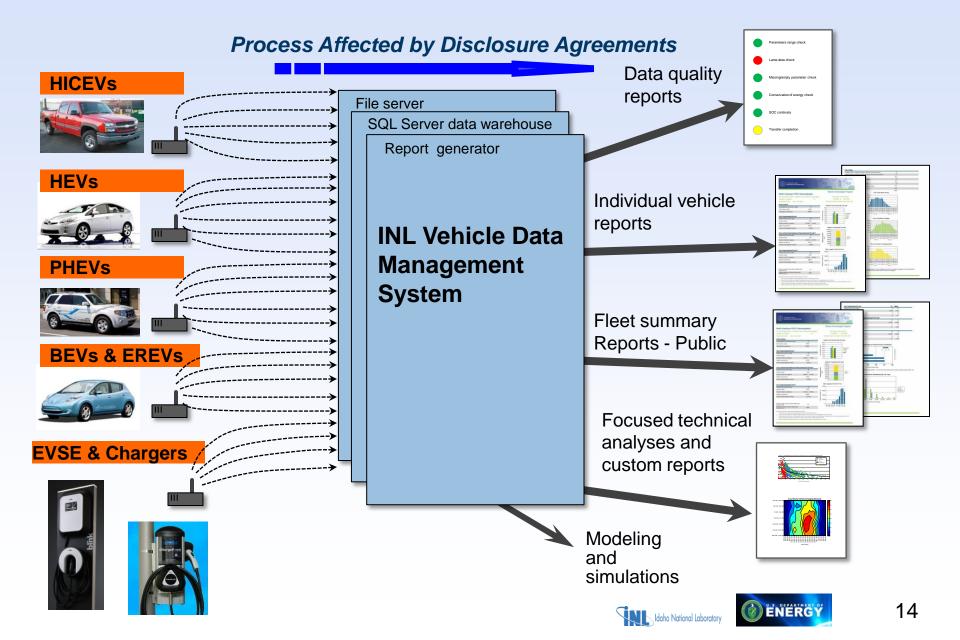


### INL Data Collection Activities in Support of DOE's Transportation Electrification Demonstrations



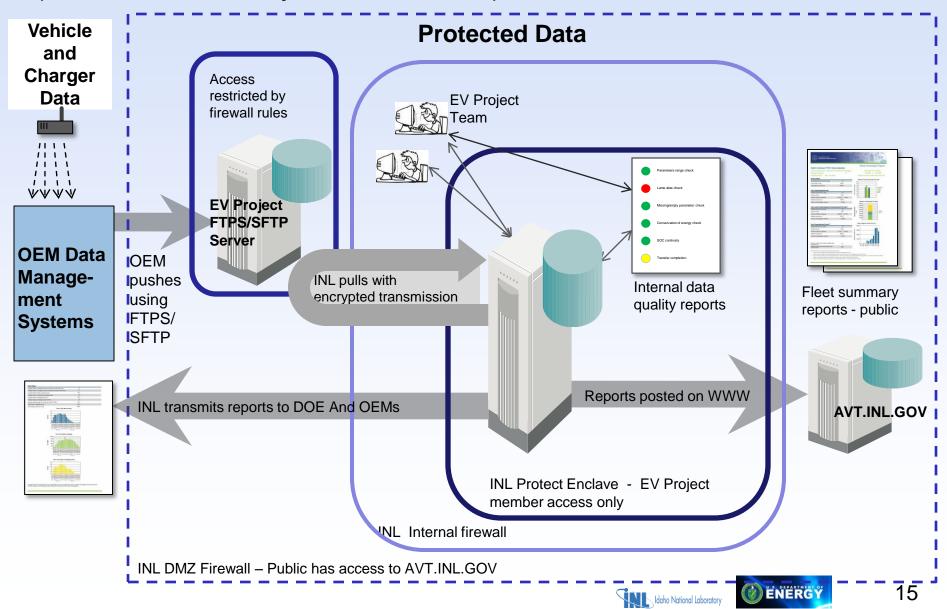




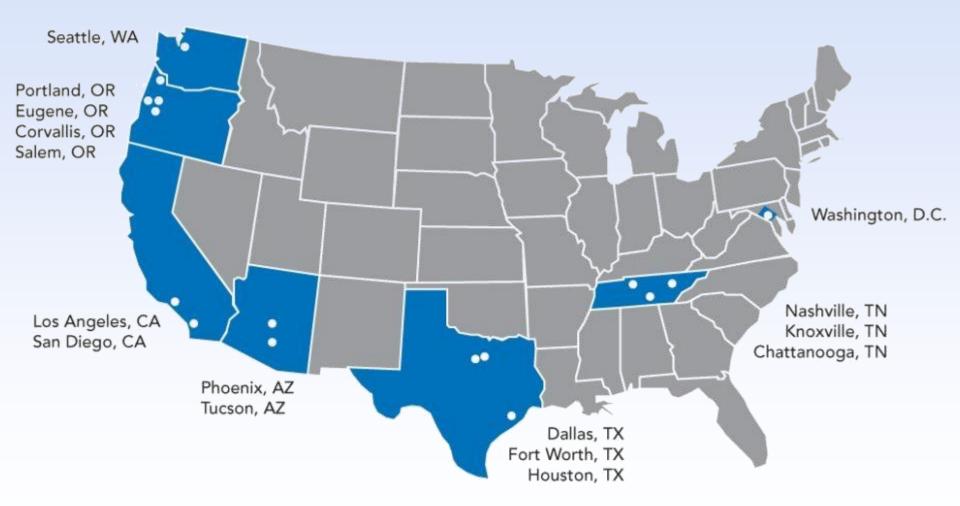

### **INL Data Collection Support**

- INL tasked with data collection, analysis, and reporting for five light-duty vehicle and infrastructure deployment projects funded by DOE:
  - EV Project:
    - 8,300 Leaf BEVs and Volt EREVs,
    - 15,300 ECOtality Level 2 EVSE and fast chargers.
  - 4,700 Level 2 EVSE deployed by Coulomb
  - 140 Chrysler Ram PHEV Pickups
  - 145 Chevrolet Volt Extended-range electric vehicles
  - 21 Ford Escape PHEV SUVs
- Data is being collected from all vehicles and charging units
- Raw data and personal information protected by numerous Non Disclosure Agreements with project partners






### **Vehicle/EVSE Data Management Process**




### **INL Data Management System - Push**

(Nissan, GM, Chrysler, Coulomb)



## **EV Project Locations (Largest Data Collection Activity)**







### **EV Project Residential Infrastructure**

- Deploy 8,300 battery electric vehicles
  - 5,700 Nissan Leaf battery EVs
  - 2,600 Chevrolet Volt extended range EVs
- Install 8,300 level 2 residential EVSE











### **EV Project Commercial Infrastructure**

- Install ~5,300 level 2 EVSE
  - Retail locations
  - Municipal locations
  - Employer locations
- Deploy 200 Dual Port DC Fast Chargers













### **Objective of the EV Project**

- Build mature EV charging infrastructure in nine regions and study:
  - Infrastructure deployment process
  - Customer driving and charging behavior
  - Impact on electric grid
- Provide lessons learned to enable mass deployment of plug-in electric vehicles and charging infrastructure





#### EV Project Nissan Leaf Vehicle Summary Report

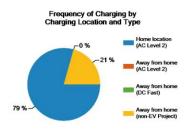
Region: All

Number of vehicles: 35

Reporting period: January 2011 through March 2011

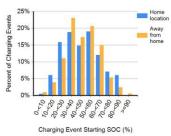
#### Vehicle Usage

| Number of trips                                                   | 3,364  |
|-------------------------------------------------------------------|--------|
| Total distance traveled (mi)                                      | 21,706 |
| Avg trip distance (mi)                                            | 5.8    |
| Avg distance traveled per day when the vehicle was driven (mi)    | 32.5   |
| Avg number of trips between charging events                       | 3.3    |
| Avg distance traveled between charging events (mi)                | 21.5   |
| Avg number of charging events per day when the vehicle was driven | 1.5    |

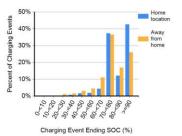

| Charging Location and Type                                         | Home charging<br>location | Away-from-home<br>charging locations |                        |                                            |
|--------------------------------------------------------------------|---------------------------|--------------------------------------|------------------------|--------------------------------------------|
|                                                                    | AC<br>level 2<br>charging | AC<br>level 2<br>charging            | DC<br>fast<br>charging | Non-EV<br>Project<br>charging <sup>1</sup> |
| Total number of charging events                                    | 800                       | 0                                    | 0                      | 208                                        |
| Percent of all charging events                                     | 79%                       | 0%                                   | 0%                     | 21%                                        |
| Total time plugged-in (hr)                                         | 8,126                     | 0                                    | 0                      | -                                          |
| Percent of all time plugged-in at<br>EV Project charging units     | 100%                      | 0%                                   | 0%                     | -                                          |
| Total electricity consumed (AC MWh)                                | 5.25                      | 0                                    | 0                      | -                                          |
| Percent of all electricity consumed from EV Project charging units | 100%                      | 0%                                   | 0%                     | -                                          |

| Charging Completeness                                    | Home charging<br>location | Away-from-home<br>charging locations |                        |                                            |
|----------------------------------------------------------|---------------------------|--------------------------------------|------------------------|--------------------------------------------|
|                                                          | AC<br>level 2<br>charging | AC<br>level 2<br>charging            | DC<br>fast<br>charging | Non-EV<br>Project<br>charging <sup>1</sup> |
| Number of complete charging events <sup>2</sup>          | 199                       | 0                                    | 0                      | 54                                         |
| Percent of charging events of the same type and location | 43%                       | 0%                                   | 0%                     | 26%                                        |
| Number of partial charging events <sup>3</sup>           | 268                       | 0                                    | 0                      | 154                                        |
| Percent of charging events of the same type and location | 57%                       | 0%                                   | 0%                     | 74%                                        |

1 Charging level, time plugged-in, and electricity consumed are not available from Non-EV Project charging units. Charging level could be AC level 1, AC level 2, or DC fast charging.


<sup>2</sup> Complete charging events end with battery state of charge at 90% to 100% (for charging events with SOC reported)

<sup>3</sup> Partial charging events end with battery state of charge below 90% (for charging events with SOC reported)




Project

Battery State of Charge (SOC) at the Start of Charging Events



Battery State of Charge (SOC) at the End of Charging Events



### EV Project – Nissan Leaf **Quarterly Usage** Report

#### 5/19/2011 3:47:13 PM







Idaho National Laboratory

INL/MIS-11-21904

### EV Project – Nissan Leaf Usage Report

Region: All

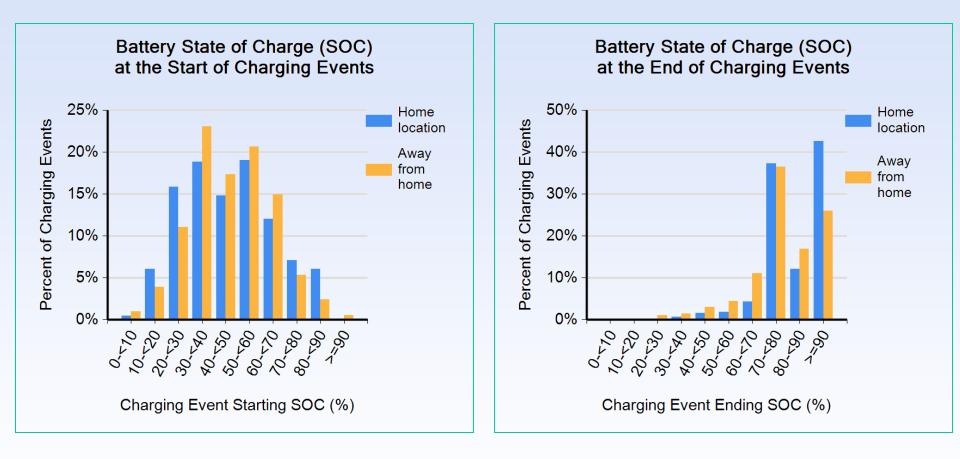
Number of vehicles: 35

Reporting period: January 2011 through March 2011

### Vehicle Usage

| Number of trips                                                   | 3,364  |
|-------------------------------------------------------------------|--------|
| Total distance traveled (mi)                                      | 21,706 |
| Avg trip distance (mi)                                            | 5.8    |
| Avg distance traveled per day when the vehicle was driven (mi)    | 32.5   |
| Avg number of trips between charging events                       | 3.3    |
| Avg distance traveled between charging events (mi)                | 21.5   |
| Avg number of charging events per day when the vehicle was driven | 1.5    |






### EV Project – Nissan Leaf Usage cont'd

| Charging Location and Type                                            | Home charging<br>location | Away-from-home<br>charging locations |                        |                                |
|-----------------------------------------------------------------------|---------------------------|--------------------------------------|------------------------|--------------------------------|
|                                                                       | AC<br>level 2<br>charging | AC<br>level 2<br>charging            | DC<br>fast<br>charging | Non-EV<br>Project<br>charging¹ |
| Total number of charging events                                       | 800                       | 0                                    | 0                      | 208                            |
| Percent of all charging events                                        | 79%                       | 0%                                   | 0%                     | 21%                            |
| Total time plugged-in (hr)                                            | 8,126                     | 0                                    | 0                      | -                              |
| Percent of all time plugged-in at<br>EV Project charging units        | 100%                      | 0%                                   | 0%                     | -                              |
| Total electricity consumed (AC MWh)                                   | 5.25                      | 0                                    | 0                      | -                              |
| Percent of all electricity consumed from<br>EV Project charging units | 100%                      | 0%                                   | 0%                     | -                              |



### EV Project – Nissan Leaf Usage – cont'd







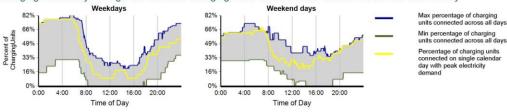
Drivato

Publicly

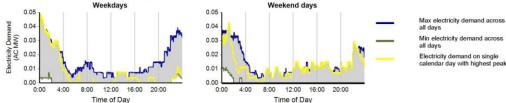
#### EV Project Electric Vehicle Charging Infrastructure Summary Report

Project

Publich


Report period: January 2011 through March 2011

Number of EV Project vehicles in region: 35


Region: All

| Charging Unit Usage                                                                                              | Anderse Filler i superite i                                            | Residential<br>Level 2          | Nonresidential<br>Level 2                | Available<br>Level 2 | Available<br>DC Fast                                                                                               | Total                            |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------|------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Number of charging units <sup>1</sup>                                                                            |                                                                        | 35                              | 0                                        | 0                    | 0                                                                                                                  | 35                               |
| Number of charging events <sup>2</sup>                                                                           |                                                                        | 800                             | 0                                        | 0                    | 0                                                                                                                  | 800                              |
| Electricity consumed (AC MWh)                                                                                    |                                                                        | 5.25                            | 0.00                                     | 0.00                 | 0.00                                                                                                               | 5.25                             |
| Percent of time with a vehicle connected to ch                                                                   | arging unit                                                            | 36%                             | 0%                                       | 0%                   | 0%                                                                                                                 | 36%                              |
| Percent of time with a vehicle drawing power f                                                                   | rom charging unit                                                      | 7%                              | 0%                                       | 0%                   | 0%                                                                                                                 | 7%                               |
| Number of Charge Events                                                                                          | Electricity Consumed                                                   |                                 |                                          | Charging L           | Unit Utilization                                                                                                   |                                  |
| 100 %                                                                                                            | 100 %                                                                  | 0%                              | 40% -<br>30% -<br>20% -<br>10% -<br>0% - |                      |                                                                                                                    |                                  |
| Residential Level 2<br>Private Nonesidential Level 2<br>Publicly Available Level 2<br>Publicly Available DC Fast | Residential Le<br>Private Nonres<br>Publicty Availa<br>Publicty Availa | idential Level 2<br>ble Level 2 |                                          | Level 2 Non          | Private Publicly<br>rresidential Available A<br>Level 2 Level 2<br>ad to Charging Unit<br>Power From Charging Unit | Publicly<br>Available DC<br>Fast |

#### Charging Availability: Range of Percent of Charging Units with a Vehicle Connected versus Time of Day<sup>3</sup>



Charging Demand: Range of Aggregate Electricity Demand versus Time of Day<sup>4</sup>



<sup>1</sup> Includes all charging units that were in use by the end of the reporting period

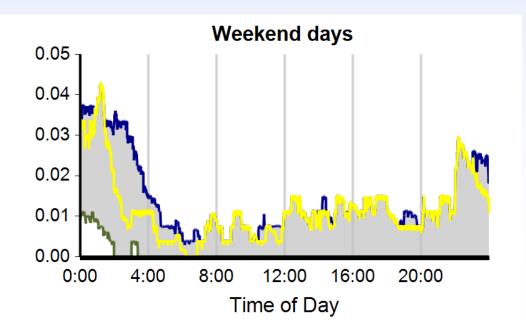
<sup>2</sup> A charging event is defined as the period when a vehicle is connected to a charging unit, during which period some power is transferred

<sup>3</sup> Considers the connection status of all charging units every minute

<sup>4</sup> Based on 15 minute rolling average power output from all charging units



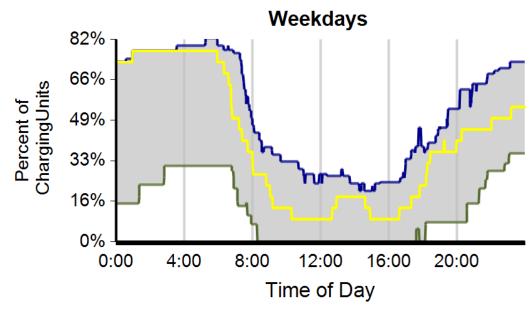
5/19/2011 5:37:48 PM INL/LTD-11-22097 1 of 2

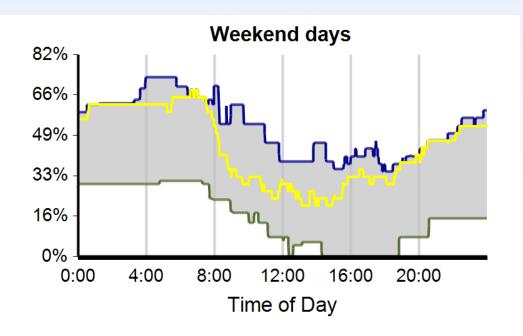

### EV Project – EV Charging Infrastructure Summary Report

- Charging unit usage
- Percent charging units with a vehicle connected by time of day
- Range of aggregate electricity demand versus time of day
- See next 2 slides





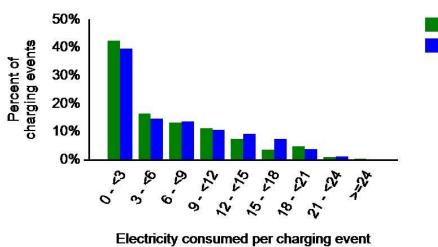



EV Project – EV Charging Infrastructure Summary Report – cont'd

- Power demand range for any time during reporting quarter
- Yellow line is daily profile for the day with quarterly peak demand
- Both graphs in AC MW
- Based on 15 minute rolling average MW demand

ENERC

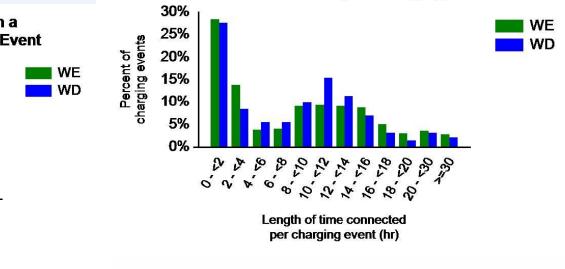





EV Project – EV Charging Infrastructure Summary Report – cont'd

- Range of charging units with a vehicle connected
- Yellow line is for day with peak power demand
- Both graphs percent of charging units

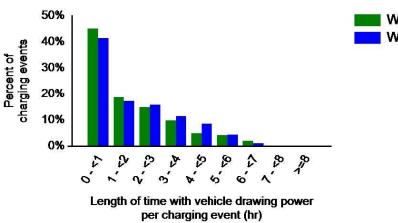





Distribution of Electricity Consumed per Charging Event

#### (AC kWh)

EV Project – EV Charging Infrastructure Summary Report – cont'd


Distribution of Length of Time with a Vehicle Connected per Charging Event



WE

WD

Distribution of Length of Time with a Vehicle Drawing Power per Charging Event



ENERG



### **EV Project – Updated Number of Units**

| 1 <sup>st</sup> Quarter 2011 Report Leaf and EVSE Units with Data |     |  |
|-------------------------------------------------------------------|-----|--|
| Number of Leafs                                                   | 50  |  |
| Number of Blink EVSE                                              | 107 |  |
| Total number of units providing data                              | 157 |  |

| July 25, 2011 Leaf and EVSE Units with Data |       |  |
|---------------------------------------------|-------|--|
| Number of Leafs                             | 1,697 |  |
| Number of Blink EVSE residential            | 1,752 |  |
| Number of Blink EVSE commercial             | 122   |  |
| Total number of units providing data        | 3,571 |  |





### Ford Escape PHEV vehicle demo

- Ford produced 21 Ford Escape PHEVs prototype vehicles with 12 kWh battery pack
- Blended mode operation (engine comes on during charge depleting mode to meet power demand)
- Part of DOE's Technology Acceleration and Deployment Activity





U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

#### Ford Escape Advanced Research Fleet

Number of vehicles: 21 Reporting period: Nov 09 - Apr 11 Date range of data received:11/01/2009 to 04/30/2011Number of vehicle days driven:5,425

#### All Trips Combined

| Overall gasoline fuel economy (mpg)                              | 38      |
|------------------------------------------------------------------|---------|
| Overall AC electrical energy consumption (AC Wh/mi) <sup>1</sup> | 101     |
| Overall DC electrical energy consumption (DC Wh/mi) <sup>2</sup> | 66      |
| Total number of trips                                            | 23,548  |
| Total distance traveled (mi)                                     | 299,960 |

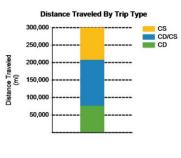
#### Trips in Charge Depleting (CD) mode<sup>3</sup>

| Gasoline fuel economy (mpg)                              | 52        |
|----------------------------------------------------------|-----------|
| DC electrical energy consumption (DC Wh/mi) <sup>4</sup> | 170       |
| Number of trips                                          | 13,205    |
| Percent of trips city   highway                          | 84%   16% |
| Distance traveled (mi)                                   | 75,997    |
| Percent of total distance traveled                       | 25%       |
|                                                          |           |

#### Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes<sup>5</sup>

| Gasoline fuel economy (mpg)                              | 37        |
|----------------------------------------------------------|-----------|
| DC electrical energy consumption (DC Wh/mi) <sup>6</sup> | 55        |
| Number of trips                                          | 4,506     |
| Percent of trips city   highway                          | 38%   62% |
| Distance traveled (mi)                                   | 131,484   |
| Percent of total distance traveled                       | 44%       |

#### Trips in Charge Sustaining (CS) mode7


| Gasoline fuel economy (mpg)        | 32        |
|------------------------------------|-----------|
| Number of trips                    | 5,831     |
| Percent of trips city   highway    | 65%   35% |
| Distance traveled (mi)             | 92,478    |
| Percent of total distance traveled | 31%       |
|                                    |           |

Notes: 1 - 7. Please see http://avt.inl.gov/pdf/phev/fordreportnotes.pdf for an explanation of all PHEV Fleet Testing Report notes.

Since these vehicles are flex-fuel capable, some driving events are conducted with E-85, which may decrease fuel economy results

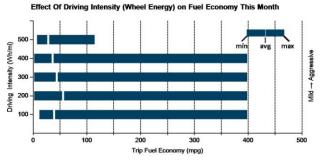
"The Ford Escape Advanced Research Fleet was designed as a demonstration of customer duty cycles related to plug-in electric vehicles. The vehicles used in this demonstration have not been optimized to provide the maximum potential fuel economy."

# Gasoline Fuel Economy By Trip Type

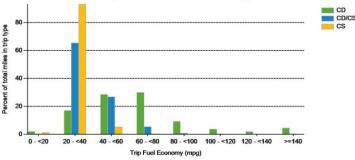


### Ford Escape PHEV 3-Page Report

- 300,000 test miles and 24,000 trips
- All trips, 38 mpg, 101 AC Wh/mi & 66 DC Wh/mi
- Charge Depleting (CD), 52 mpg & 170 DC Wh/mi
- Charge Sustaining (CS), 32 mpg
- Plugging in = 63% increase in overall MPG when comparing CD to CS trips
- 56% of miles in CD trips
- 25% of miles in CS trips






#### VEHICLE TECHNOLOGIES PROGRAM

| Trips in Charge Depleting (CD) mode                          | City | Highway |
|--------------------------------------------------------------|------|---------|
| Gasoline fuel economy (mpg)                                  | 48   | 57      |
| DC electrical energy consumption (DC Wh/mi)                  | 171  | 169     |
| Percent of miles with internal combustion engine off         | 37%  | 13%     |
| Average trip driving intensity (Wh/mi)                       | 265  | 305     |
| Average trip distance (mi)                                   | 3    | 17      |
| Trips in Charge Depleting and Charge Sustaining (CD/CS) mode |      |         |
| Gasoline fuel economy (mpg)                                  | 43   | 36      |
| DC electrical energy consumption (DC Wh/mi)                  | 79   | 52      |
| Percent of miles with internal combustion engine off         | 30%  | 5%      |
| Average trip driving intensity (Wh/mi)                       | 277  | 325     |
| Average trip distance (mi)                                   | 9    | 41      |
| Trips in Charge Sustaining (CS) mode                         |      |         |
| Gasoline fuel economy (mpg)                                  | 30   | 32      |
| Percent of miles with internal combustion engine off         | 23%  | 4%      |
| Average trip driving intensity (Wh/mi)                       | 266  | 321     |
| Average trip distance (mi)                                   | 4    | 38      |







### Ford Escape PHEV 3-Page Report

- Highway and city cycle impacts
- CD city, 48 mpg, 171 DC Wh/mi
- CD highway, 57 mpg, 169 DC Wh/mi
- CS city, 30 mpg
- CS highway, 32 mpg
- Plugging in = 60% increase in city MPG and 78% increase in highway MPG (compare CD to CS)
- During CD trips 50% miles with engine off
- During CS trips 27% miles with engine off







### **Other INL Data Collection Projects – cont'd**

- 140 Ram PHEV pickups same report format as Ford Escape PHEVs (August reporting)
- 150 Chevy Volts data collection (August reporting)
- 20 Lithium PHEV Escape Quantum conversions (SCAQMD) – same format as Ford (August reporting)
- Development of vehicle-based battery test-bed mule for testing emerging battery technologies
- Developing other EVSE data collection activities that support Clean Cities-funded demonstrations with:
  - Aerovironment
  - Eaton
  - Shorepower













### Acknowledgement

This work is supported by the U.S. Department of Energy's EERE Vehicle Technologies Program

Argonne and Oak Ridge National Laboratories provide dynamometer and other testing support

> More Information http://avt.inl.gov

> > INL/MIS-11-22496



